
SREPORT DOCUMENTATION PAGE Form Appot,

IOPM No.

Public reporting burden for this collection of information Is estimated to average I hour per response, including the time for reviewing instructions, searching existing data
sources gathering and maintaining the data needed, and reviewing the collection of information. Send comments regading this burden to Washington Headquarters
Service. Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Information and
Regulatory Affairs, Office of Management and Budget, Washington, DC 20503-

1. AGENCY USE (Leave 2. REPORT 13. REPORT TYPE AND DATES

4. TITLE AND: Rational Software Corporation, 940608W1.1 1356, { -[5. FUNDING

Compiler: Apex 1.4.1

AD-A283 419
6. Authors: Wright-Patterson, AFB, Dayton, OH, USA . I11 llhi IIi I1I Ill Ill

7. PERFORMING ORGANIZATION NAME (S) AND: Ada Validating Facility 8. PERFORMING
Language Control Facility ASD/SCEL, Bldg. 676, Rm. 135 ORGANIZATION
Wright-Patterson AFB, Dayton OH 45433

9. SPONSORING/MONITORING AGENCY NAME(S) AND: 10. SPONSORING/MONITORING
Ada Joint Program Office 701 S. Courthouse Rd. AGENCY
DISA Arlington VA
Code TXEA 22204-2199 ,

11. SUPPLEMENTARY

", \'' to

12a. DISTRIBUTION/AVAILABILITY: Approved for "ublic Release; 12b. DRISTRIBUTION
distribution unlimited

•?r?•94-2487 1
13. (Maximum 200 94-24,i71
Host and Target: SPARCstation 10/51 (under SunOS 4.1.3)

14. SUBJECT: Ada Programming Language, Ada Compiler Validation Summary 115. NUMBER OF

Report, Ada Compiler Validation Capability Validation Testing, Ada Validation Office,
Ada Validation Facility 16. PRICE

17 SECURiTY 18. SECURITY 19. SECURITY 120. LIMITATION OF

CLASSIFICATION CLASSIFICATION

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
NSN

94 0Ell 053



AVF Control Number: AVF-VSR-584.0694
Date VSR Completed: 5 July 1994

94-03-07-BAT

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 940608W1.11356
Rational Software Corporation

PRpe., 1.4.1
Sun SPARCstation 10/51 under SunOS, 4.1.3

(Final)

Prepared By:
Ada Validation Facility

645 CCSC/SCSL
Wright-Patterson AFB OH 45433-5707

Accesion For

NlTIS CRA&I
DTIC TAB

Unannounced F1
Juqtification .... ......................

Ju t -------t --------------- -- --By-........... -----.

DiSt ibution I

Availability Codes

Avail aIdur
Dist Special 0

-0



Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1.11.
Testing was completed on 8 June 1994.

Compiler Name and Version: Apex, 1.4.1

Host Computer System: Sun SPARCstation 10/51
under SunOS, 4.1.3

Target Computer System: Same as host

Customer Agreement Number: 94-03-07-RAT

See section 3.1 for any additional information about the testing environment.

As a result of this validation effort, Validation Certificate 940608W1.11356
is awarded to Rational Software Corporation. This certificate expires two
years after MIL-STD-1815B is approved by ANSI.

This Leport has bcta rc-.iewed and is approved.

Ma Validation Facilit
Dale E. Lange
Technical Director
645 CCSG/SCSL
Wright-Patterson AFB OH 45433-5707

A Organization
SDinrt°teorT~puter and Software Engineering Division
Institute tor Defense Analyses
Alexandria VA 22311

Defense InformAtion Systems Agency,
Center for Information Management



DECLARATION OF CONFORMANCE

Customer: Rational Software Corporation

Ada validation Facility: Computer Operations Division
Information Systems and Technology Center
Wright-Patterson AFB, OH 45433-6503

ACVC Version: 1.11

Ada Implementation:

Compiler Name and
Version: Apex 1.4.1

Host and Target
Computer System: SparcStation 10/51 SunOS 4.1.3

Customer's Declaration

I, the undersigned, representing Rational Software Corporation, declare that
Rational Software Corporation has no knowledge of deliberate deviations from
the Ada Language Standard ANSI/MIL-STD-1815A in the implementation listed in
this declaration.

________Alt Date: ch/4/99'z
Steve Zeigler - /"
2800 San Tomas Expressway
Santa Clara, CA 95051-0951



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMJV"NRY REPORT ...... ...... 1-1
1.2 REFERENCES ............... ..................... .. 1-2
1.3 ACVC TEST CLASSES ............ ................ .. 1-2
1.4 DEFINITION OF TERMS .......... ................ .. 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS .............. ................. .. 2-1
2.2 INAPPLICABLE TESTS ............. ................ .. 2-1
2.3 TEST MODIFICATIONS ............. ................ .. 2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT . .......... ............... 3-1
3.2 SUMMARY OF TEST RESULTS .... ............ .... 3-1
3.3 TEST EXECUTION ............ ................... .. 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION AND LINKER OPTIONS

APPENDIX C APPENDIX F OF THE Ada STaNDARD



CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
validation Procedures (Pro92] against the Ada Standard (Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation. For
any technical terms used in this report, the reader is referred to [Pro92].
A detailed description of the ACVC may be found in the current ACVC User's
Guide rUG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply only
to the computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1-1



INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language.
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro92] Ada Compiler Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

I. 1 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they are
executed. Three Ada library units, the packages REPORT and SPPRT13, and the
procedure CHECK FILE are used for this purpose. The package REPORT also
provides a sit of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of text
files written by some of the -Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class B
tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation of
the Ada Standard involving multiple, separately compiled units. Errors are
expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values - for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2



INTRODUCTION

For each Ada implementation, a customized test suite is produced by the AVF.
This customization consists of making the modifications described in the
preceding paragraph, removing withdrawn tests (see section 2.1), and possibly
removing some inapplicable tests (see section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of the
customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added to
a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or part

of a program and also for all or part of the data necessary
for the execution of the program; executes user-written or
user-designated programs; performs user-designated data
manipulation, including arithmetic operations and logic
operations; and that can execute programs that modify
themselves during execution. A computer system may be a
stand-alone unit or may consist of several inter-connected
units.

1-3



INTRODUCTION

Conformity Fulfillment by a product, process, or service of all
requirements specified.

Customer An individual or corporate entity who enters into an agreement
with an AVF which specifies the terms and conditions for AVF
services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for which

validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from the
LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually, operating
systems are predominantly software, but partial or complete
hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro92].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate for
this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or contains
erroneous or illegal use of the Ada programming language.

1-4



CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 22 November 1993.

B27005A E28005C B28006C C32203A C34006D C35507K
C35507L C35507N C355070 C35507P C35508I C35508J
C35508M C35508N C35702A C35702B C37310A B41308B
C43004A C45114A C45346A C45612A C45612B C45612C
C45651A C46022A B49008A B49008B A54B02A C55B06A
A74006A C74308A B83022B B83022H B83025B B83025D
C83026A B83026B C83041A B85001L C86001F C94021A
C97116A C98003B BA2011A CB7001A CB7001B CB7004A
CC1223A BC1226A CC1226B BC3009B BDlB02B BDlB06A
ADIB08A BD2A02A CD2A21E CD2A23E CD2A32A CD2A4lA
CD2A41E CD2A87A CD2BI5C BD3006A BD4008A CD4022A
CD4022D CD4024B CD4024C CD4024D CD4031A CD4051D
CD5111A CD7004C ED7005D CD7005E AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A BD8004C
CD9005A CD9005B CDA201E CE2107I CE2117A CE2117B
CE2119B CE2205B CE2405A CE3111C CE3116A CE3118A
CE3411B CE3412B CE3607B CE3607C CE3607D CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may be
supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1



IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 21 tests check fo- the predefined type SHORT-INTEGER; for
this implementation, there is no such type:

C35404B B36105C C45231B C45304B C45411B
C45412B C45502B C45503B C45504B C45504E
C45611B C45613B C456149 C45631B C45632B
B52004E C55BO7B B55B09D B86001V C86006D
CD7101E

The following 20 tests check for the predefined type LONGINTEGER; for
this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55BO7A B55B09C B86001W C86006C CD7101F

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONGINTEGER, or
SHORT INTEGER; for this implementation, there is no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORTFLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floatiny-point type with a
name other than FLOAT, LWk FLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
%rpes that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results of
various floating-point operations lie outsiue the range of the base
type; for this implementation, MACHINEOVERFLOWS is TRUE.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

2-2



IMPLENTATION DEPENDENCIES

C96005B uses values of type DURATION's base type thac are outside the
range of type DURATION; for this implementation, the ranges are the
same.

LA3004A..B, EA3004C..D, and CA3004E..F (6 tests) check prlgma INLINE for
procedures and functions; this implementation does not support pragma
!NLINE.

CD1009C checks whether a length clause can specify a non-default size
lor a floating-point type; this implementation does not support such
sizes.

CD2A84A, CD2A84E, CDZA841..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation does
not support such sizes.

CD2Bl5B checks that STORAGE ERROR is raised when tl.e storage size
specified for a collection is too small to hold a single value of the
designated •ype; this implementation allc:ates more space than was
specified by the length clause, as allowed by AI-00558.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine code
insertions; this implementation provides no package MACHINECODE.

AE2101H, EEA401D, and EE2401G use instantiations of package DIRECT 10
with unconstrained arcav types and record types with discriminants
without defaults; these in.rtantiations are rejected by this compiler.

The tests listed in the following table check that USE ERROR is raised
if the given file operations are not supported for the given combination
of mode and access method; this implementation supports these
operations.

Test File Operation Mode File Access Method

CE2102D CREATE IN FILE SEQUENTIAL 10
CE2102E CREATE OUT FILE SEQUENTIAL-IO
CE2102F CREATE INOXY FILE DIRECT 10
CE2102I CREATE IN FILE DIRECT --0
CE2102J CREATE OUT FILE DIRECT 10
CE2102N OPEN IN FILE SEQUENTIAL 10
CE21020 RESET IN FILE SEQUENTIAL IO
CE2102P OPEN OUT FILE SEQUENTIAL-IO
CE2102Q RESET OUT-FILE SEQUENTIAL-0IO
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT-FILE DTRECT-IO
CE2102T OPEN IN FILE DIRECT--I0
CE2102U RESET IN FILE DIRECT I0
CE2102V OPEN OUTf FILE DIRECT-10
CE2102W "ESET OUT FILE DIRECT IO
CE3102E CRE.NTE IN FILE TEXT 15
CE3102F RESET Any Mode TEXT IO
CE3102G DELETE TEXT-IO

2-3



IMPLEMENTATION DEPENDENCIES

CE3102I CREATE OUT FILE TEXT 10
CE3102J OPEN IN FILE TEXT IO
CE3102K OPEN OUTFILE TEXTIO.

CE2203A checks that WRITE raises USE ERROR if tre capacity of an
external sequential file is exceeded; this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this-implementation cannoL restrict
file capacity.

CE3111B, CE3111D..E (2 tests), CE3114B, and CE3115A check operations on
text files when multiple internal files are associated with the same
external file and one or more are open for writing; USEERROR is raised
when this association is attempted.

CE3304A checks that SET LINE LENGTH and SET PAGE LENGTH raise USE ERROR
if they specify an inapproprTate value for The external file; theTe are
no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
number exceeds COUNT'LAST; for this implementation, the value of
COUNT'LAST is greater than 150000, making the checking of this objective
impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 122 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B22003A B22003B B22004A B22004B B22004C B22005K
B22005L B23002A B23004A B23004B B24001A B24001B
B24001C B24005A B24005B B24007A B24009A B24104A
B242)4A B24204B B24204C B24204D B24204E B24204F
B24205A B24206A B242C6B B25002A B25002B B26001A
B26002A B26005A B28003A B28003C B29001A B2AO03A
B2AO03B B2AO03C B2AO03D B2AO03E B2AO03F B2AO04A
B2A005A B2AO05B B2AO07A B2A021A B32103A B33101A
B33201B B33202B B33203B B33301A B33301B B35101A
B36002A B37106A B37205A B37307B B38003A B38003B
B38009A B38009B B38103A B38103B B38103C B38103D
B38103E B41201A B44001A B44004A B44004B B44004C
B45205A B48002A B48002D B51001A B53003A B55AOIA
B61005A B64006A B67001A B67001B B67001C B67001D
B67001H B71001A B71001G B71001M B74104A B74307B
B83EOIC B83EOD B85008G B85008H B91001H B95001D
B95003A B95004A B95063A BA1101E BB1006B BB3005A
BC1013A BC1109A BCl109B BC1109C BC1109D BC1201A
BC1206A BC1303F BC2001D BC2001E BC3003B BC3005B

2-4



IMPLETATICN DEPENDENCIES

BC3013A BD2B14A BD2CI4A BE2210A BE2413A

BC3204D and BC3205C were graded passed by Evaluation Modification as directed
by the AVO. These tests are expected to produce compilation errors, but this
implementation compiles the units without error; all errors are detected at
link time. This benavior is allowed by AI-00256, as the units are illegal
only with respect to units that they do not depend on.

CE3804H was graded passeJ by EvaJuation Modification as directed by the AVO.
This test requires that the string "-3.525" can be read from a file using
FLOAT 10 and that an equality comparison with the numeric literal '-3.525'
will evaluate to TRUE; however, because -3.525 is not a model number, this
comparison may evaluate to FALSE (LRM 4.9:12). This implementation's
compile-time and run-time evaluation algorithms differ; thus, this check for
equality fails and Report.Failed is called at line 81, which outputs the
message "WIDTH CHARACTERS NOT READ." All other checks were passed.

2-5



CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation, contact:

Jerry Rudisin
Rational Software Corporation
2800 San Tomas Expressway
Santa Clara CA 95051-0951
(408) 496-3712

Testing of this Ada implementation was conducted at the customer's site by a
validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Progranming Language
Standard, whether the test is applicable or inapplicable; otherwise, the Ada
Implementation fails the ACVC [Pro92].

For all processed tests (inapplicable and applicable), a result was obtained
that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various categories.
All tests were processed, except those that were withdrawn because of test
errors (item ij; see section 2.1), those that require a floating-point
precision that exceeds the implementation's maximum precision (item e; see
section 2.2), and those that depend on the support of a file system -- if
none is supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

3-1



PROCESSIN INFORMATION

a) Total Number of Applicable Tests 3750
b) Total Number of Withdrawn Tests 104
c) Processed Inapplicable Tests 115
d) Non-Processed I/ Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 316 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The validation tape was
loaded on a machine acting as a file server. The files were accessed via
automounted NFS.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled, linked and executed on the host computer system.
The results were captured on the host computer system.

Testing ;.as performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

Option I Switch Effect

-listing_directory <dir> To produce a listing in the specified
directory <dir>.

-compile To syntactically and semantically analyze a
source file and produce an Ada unit (or
units) if correct.

-goal linked Produce the object code and linked
executable for an Ada main program.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3-2



V0 0

S (U

tm v> I-
to. 0

0) 40
0 0 -

'E 0 Coi~8 0. 0)
.-m ), 0o .O

0. CZ-Lf-Zm 0 0 Co 3: 76 (
U~ oo .C* <za
0)

CD _ M 00 C

~~~t 0)oc 0 ~E~ot

* oC-~a O(D a) V .O ld
E~~~ 000 M n 3 :- :cc

gn U 0 E 0.
CD o Ca Co

VO Co Co) Co- Coa 2 - %
CL0() ()aa 0 0 0

u 8- 0 >-E(0 4- N U
.8 CUo . CL

4- (D a)2 0 0u E0 D D c"

v C0

oc-c m

*0

0 0

0 0)

0

4c

0; 2
CU~f

0
CLC

Cu .0o aJ alWZW W-i 0)
<0 (L E1



.00

= Cu

cc0 Ca 0 0
OC. Oc. L).

o. =.. 0 MC

(D = CO 'D 0 r

-Oo CL -E2 0

-0e . ~ C0
V 0 (0 r- a.0 U 4  C0 - j

Co 0 C *>E c

0. m cc F0
a)o~O 0 0 0 Jý w

E ooO -00 on0 0c 0c 9~ 0E CL o-q D ) oE 0.2 u ~0 0.O (DCLC
>, 0 0ooo .6 (DCC 0 L >

0 v :a- C
0L 0

a)~~~~. S 0 M =xg-

A- o 8C cn E Cc
0 < 0E "a E0

00

0 0 Cu

_ UI- 0..CL.

0

o n E 2 E E C C0 0 0 0 00 z 0m m .

0a

o 2E E Ee
0 Z) CJ CJ (D0

CL -C
0 cc _0a 0

U) 0 0 0 00



0

0~ U0

I~E .2

o o 0

co' r~~0- 0
> cilCL IL a.0)tM~~0 c. 0. 9. 0of-."C

ccc&= c
_ U)o C U) W O

tes E a E Cc) c

(D-00 'C N)- .c 0 . .c -- _o G c .~c~ o-xc U'e= Oa
.- 0 0 0 (M "-r- 4-I

4 = E

(D0ý' 0 >~~oc c O U

cc a . n)J C) :
ED Q 040 z()z - sz

.4- 0 a
.2 0 0 0C a)M

C~'C
0 0) C 01 )O o -wc

0 0

0 Cuc

(U C C

00. 0

U- C

* n E
0 0(0

0 0 (

EE
0w 0

CL 0 1

0 0 -
U 

aDU I

Cu -1 00
CO OLL



0

0

CA zo

> U

0' 0
'S < 0 00

a:n' 0 0 cc - 4 Z
> 0 'a OD '0.

a)- _j r U (

o 0O

(A 0 -Jch

r- 00CL0 e Cl If

00O~C Q 0 5 ,--C
coM u EL OU) V- o
C 0 = Zo 0 0

o W 0 0 0"'~ -6 WCL

CL~~~. 0 U))j0M aU

0 *C 'a C4 0z

0 tv -r
t- %LL0E

0.a0

0 ZV

Cu

a Cu

E 0.0 E
22 Cs

00

0 0 E-Q i~
0 CD E

a: u) c



0

00

~~ 0 0
c. EL -0

C 0.

OLD)

T:I CA C.AJ 0.on I wJ

ag 0 ca a a c ( 40 .

Uj . a.t 0 L

0 (D

%-~~~~~a 10 x uV(n- 33

0U c C 0 )00A na

-40-2 .200C La

E E
E~- m__ c

-zz2wDZa z zc 0 0 1
U0) : La



CLC

0 4

0. V0.

co 0.

0 E7
.0. - %-

0 0
0E C

0L 0 (D(a0 0) -0~ 0

~ 0 0 0
0 %>0

Co > 0 uZ~ CD c
cc0 >2j.~i. L :C60 0 0

0 M 0
o 0

Ei 0. 0

'a-
Co E02c*ý00 E =0

& 3 o F: Cl-

""a E o <O 0 IE a)E

M -

a. 0

U- 0 a..

0u 0 vU000
cocn CA Cn U0E E

a). ()CC)C cocx

o L00 0 0
0 c

0 0 0 0 0 0 0 -

CC Wi Ez 0

aU 0)
w z 0 -j-

4- (C F:z
(n 0 CL a-rnLM r



d
0

*= IL IL"• °0I0

a 0 '
~ I-I-.E 02

I I-._ - -o Mo

e M0 ca
ca ., 'a cc: I " = ._ M.

< 0 c 0" 0o

I d 0• :.- ,-a 0 C 1" - •

_" c 0 a)0 - b
Si•)•• C D C- "CL .(D' ca(• •_

•( --- (D 0.- M- .- -

;o•E .04=0 E

0~ ~ ~00~u 0
0 ODo.o<' W t 42 a)

,-,. / /U)

M~c 0aCLC

(D 0

CD 2 o -,
0 d 05.. 00 c c3E -0.

w E cc -

"" a 0 '

cis~~ E- ) L-

CL cn U)

00

E0. 9 Lv 0.- c - C

S0 a c .2cnccE

_ 111 r- 0 _ o

WCa 0

(D a-

0) -J 0



E0

0 (

PL C
01 0 0

x LLa (

00

c~ ~ 0 L5o cc0U

0 a~ X 0 .0
C 0 0 r 0 u> o-0 E0

O C - u gcnj~ caM (

C~ (D owC~u 0

oo( W olcW 0 L0OX

a..

a..

c 0

0- 0

PC

EE 0)O
0. 0

;~00
C -

Ea 0

0 0

0

I cn E
J 0 0

z a - <l E-
2 WZ

() c: I'll
U)~~ --z



Cý
0

(A 0
LL U. E u

CE
C d ~

0 0

%.. 0

I- Eo Er - ocm"

o 0A 0 4-

0CL E - CU 0

.0Eo -E
0 a >, CM n CD C A ) 04cs-(

OE C 4 0- CE :
wo~ E *.0 .> cuni

c: s A Z - -'a
0~ 0)r

00 4-*0 " c - _
o 00 =0 CUO MC

cc :34 Q =(D - --

c 0 0 -0
o 0 =c '2 z 2- 0 Cs n C

4- cc
6 C-

S~~0 0L0 )c

0 0o' -C0 E0

(D 0 Eno~ 00

0)

0) CU
* n U) ~U
S U- CU CU

0 0 V

o~ 0 E U

0 .z 4

V cc

E O 0 00
0 0.

x _

E ES E t0 0 zz
-~ .2 -,<~ z L

4- Wcc
wi-cr wzL

CO~ cCQ D



APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions as
mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on Lepresentation clauses. The iwplementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to co.piler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type Integer is range -2147483648 .. 2147483647;

type Float is digits 6
range -3.40282E+38 .. 3.40282E+38;

type LongFloat is digits 15
range -1.79769313486231E+308 .. 1.79769313486231E+308;

type Duration is delta 0.000061035156
range -131072.00000000 .. 131071.9999389648437500000000;

end STANDARD;

C-I



Chapter 10

* LRM Appendix F: Implementation-
Dependent Characteristics

This chapter provides information as required by the LRM
Appendix F. The implementation-dependent characteristics of
Rational Ada are described in the following sections:

-"Pragmas" on page 79

' Attributes" on page 101
a "Packages Standard and System" on page 105

a "Representation Clauses" on page 108
* "Implementation-Generated Names" on page I 10

s "Address Clauses (LRM 13.5)" on page 111
m "Unchecked Programming" on page 111

m "Input/Output Packages" on page 112
* "Other Implementation-Dependent Features" on page 114

Pragmas

This section provides:

"* General notes about pragma error handling

"* A table of Implementation dependencies in the predefined
pragmas from LRM Annex B

"* A table of implementation-defined pragmas

"* Detailed descriptions of each of the implementation-defined
pragmas starting on page 83

Error Handling for Pregmss
A pragma whose existence, placement. or arguments do not
correspond to those allowed is ignored. by default, by the

7x9" Printed Template, rev. 1.9 79



Chapter 10 LRM Appendix F: Implementation-Dependent CharacterisUcs

compiler and the runtime system. This means that a warning
is generated if the compiler detects such an error. but in any
event the compilation completes successfully.

Several Apex context switches allow you. however, to specify
whether to treat certain classes of Invalid pragmas as errors
that prevent successful compilation rather than as warnings.
See Appendix A. *Switches.' for details on the following
switches:

w RejectBadLrm_Pragmas: Affects the handling of illegal
LRM-deflned pragmas

n RejectBadRationalPragmas: Affects the handling of
illegal Rational implementation-defined pragmas

w RejectUndefined_Pragmas: Affects the handling of
pragmas defined neither in the LRM nor in this Appendix F

If more than one of the same pragma is specified where it is not
appropriate to do so (for example. two pragma Mains on the
same unit), the first one is used and the others generate
warnings at compile time.

References
a pragma warnings. LRM 2.8(9). 2.8(1 1)

Predefined Pragmas

For each pragma defined in Annex B of the LRM. Table 10- 1
describes the extent to which Rational Ada supports it.

Table 10-1 Predefined Pragmas from LRM Annex B

Predefined
Pragma Level of Support
Controlled Always implicitly in effect because the implementa-

tion does not support automatic garbage collection

Elaborate As described in Annex B

Inline Has no effect

Interface As described in Annex B: must be used in conjunc-
tion with pragmas Import-Procedure and Import-
Function

80 7x9" Printed Template, rev. 1.9



Pragmas: Implementation-Denfned Pragmas

Tabl 10-1 Prwdqfind Pragmas from LRA Annex B (Continued)

Pzedenned
Pra•ma Level of Support

List As described In Annex B

MemorySize Has no effect

Optimize Has an effect only when located in the outermost

scope. where it applies to the entire compilation unit:
If not used. the value SPACE is assumed. See "Set-

ting the Optimization Objective" on page 21

Pack As described in Annex B: see "Concepts for Object
Sizes" on page 67

Page As described in Annex B

Priority As described in Annex B and LRM 9.8(2): the default
is 127

Shared As given in Annex B: has an effect only for integer.
enumeration, access, and fixed types

StorageUnit Has no effect

Suppress As described in Annex B

System-Name Has no effect (there is only one enumeration literal in
the type System.SystemName)

Implementation-Defined Pragmas

Table 10-2 summarizes all ixnplementation-defined pragnas in

Rational Ada. Each pragma is described in more detail in the

following subsections.

7x9" Printed Template, rev. 1.9 81



Chapter 10 LRM Appendix F: Implementation-Dependent CharacteristICS

Tabe 10-2 Implemintat/on-Defined Prugmas

Implementation-

DefdPmgma! Description

Assert Raises an exception if a specified Boolean
expression evaluates to False at run time

CollectionPolicy Controls memory allocation for the collec-
tion designated by an access type

ExportFunction Creates a global symbol for an Ada function
so that it can be called by non-Ada code

ExportObject Creates a global symbol for an Ada obj)ct so
that it can be referenced by Tion-Ada code

ExportProcedure Creates a global symbol for an Ada proce-
dure so that it can be called by non-Ada
code

GenericPolicy Tells the compiler how to generate code for a
generic and its instantiations

Import Function Associates the global symbol for a non-Ada
function with an Ada name so that an Ada
subprogram can call the function

Import Object Associates the global symbol for a non-Ada
object with an Ada name. so that an Ada
subprogram can reference the object

Import-Procedure Associates the global symbol for a non-Ada
procedure with an Ada name. so that an Ada
subprogram can call the procedure

Initialize Specifies that default initiallzation be car-
ried out for an Imported object or an object
referenced by an address clause

InstancePolicy Specifies replicated code for specific instan-
tiations of a shared-code generic

Main Designates an Ada main unit and specifies
aspects of its run-time behavior

MustBe Constrained Indicates whether formal private and limited
private types within a generic formal part
must be constrained

82 N7xr Printed Template, rev. 1.9



Progmas: Pragma Assert

Table 10.2 Impam.Mtat/oM-Dft n/d Pragmas (Continued)

Implementation-
Defined Pragma Description

SignalIandler Installs a procedure as a UNIX signal

handler

SuppressAll Suppresses all permitted runtime checks

Suppress Elaboration- Suppresses elaboration checks for a specific
-Checks compilation unit

Pragma Assert

Raises an exception if a specified Boolean expression evaluates
to False at run time. The syntax is:

pragma ASSERT
([PRZDICATE ->] boalcan.ozprossion);

Arguments
0 Predicate: The Boolean expression to be evaluated at run

time.

Usage
When the pragma is encountered at run time. the Boolean
expression is evaluated. If the result is False, the System.Asser-
tionError exception is raised: if the result is True, no action is
taken.

This pragma can appear anywhere that a declaration or state-
ment is allowed.

Pragma CollectionPolicy
Controls memory allocation for the collection designated by an
access type. The syntax is:

pragma COLLECT IONPOLiCy
(ACCESSTYPE => access type,
INITIALSIZE ,> integerezxpression
1, rTENSIELE => booleano_expression
(, XTENSIONSIZZE ,> integer._ezpressLOn] );

7x9" Printed Template, rev. 1.9 83



Chapter 10 LRM Appendix F: Implementation-Dependent Characteridecs

Arguments
"* Atcess_Type: The access type on which to perform storage

management.

"* IXitial Size: The size in storage units of the initial collec-
tion that Is created for an access type. A negative value is
treated as 0.

"* Extensible: Specifies whether the collection can be
extended. If True, sets the extension size to the defr u-t or
specified value of ExtensionSize: otherwise. ExtensionSize
is ignored. The default value is True.

"* Extensionsize: The minimum number of storage units
by which the collection will be extended. when needed. if it
is extensible. A negative value is treated as 0. The default
value is 4.096 bytes.

Usage
The pragma must appear in the same declarative region as the
access type to which it applies. after the access type's declara-
tion and before any forcing occurrence of the access type. If the
access type Is a private type, the pragma must appear in the
private part after the complete access-type declaration. If the
pragma appears outside the specified areas, it is ignored.

A description and example of the pragma's application are
provided in 'Managing Storage for Access Types" on page 63.

Notes
"* The arguments must be specified using named association.
"* Only one CollectionPolicy pragma is allowed per access

type. If more than one is specified, the first L- applied and
the rest are ignored.

"a When an access type has an associated 'StorageSize
clause, any Collection Policy pragma for that access type is
ignored. This occurs because a statement of the form:
for K'STORAGE SEZZ use size;

is functionally equivalent to:

84 7x9* Pninted Template, rev. 1.9



Pragmas: Pragmas Export Function, Export-Object, and ExportProcedure

prage COLLECTiovpoLICY
(ACCESSTYPE in> X,

INITIALSIZE -> six*,
KET=SIZLE -> FUALS);

n If InithalSize is nonpositive and Extensible is False.
attempting to execute an allocator of the access type raises
the Storage _Error exception.

References
"* access type. LRM 3.8
"* allocator, LRM 4.8
"* collection. LRM 3.8
"* forcing occurrence. LRM 13.1(6)
"* Storage-.Error. LRM 11. 1
"* Storage-Size. LRM 13.7.2

Pragmas ExportFunction, ExportObject, and Export-Procedure
Creates a global symbol for an Ada subprogram (function or
procedure) or object so that it can be called or referenced by
non-Ada code. The syntax is:

prague EXPORTFUNCTION
([INTERNAL in)Internal-name,

(, (ETERNAL in)"external-name"]

(,[PARANAETER3YTPE8 parameter typejlist)
I,[RESULT TYPE - type park]
(,[LANGUAGE N)lnug ae)

pragna EXPORT OBJECT

([INTERNAL in>] Internal nam
1, (EXTERNAL->) "ezternal-name"j);

prague EXPORTPROCZDURE
([INTERNAL =20 Internal-namM

(, (XxTENAuLLi "external-nname")
(,[PARANETERTYPES i)paramieter type list]I

1, (LANGUAGE n) langua geL name));

7X9" Printed Template, rev. 1.9 855



Chapter 10 LRM Appendix F: Implementation-Dependent Characteristcs

Arguments
"* Internal: The Ada simple name of the Ada subprogram or

object to be exported. For functions, this can also be an
operator symbol.

"* External: An optional string literal that specifies the global
symbol name to be created by the Ada compiler. This name
must obey the naming conventions for the host operating
3ystem's object-module format, and therefore it may differ
from the internal subprogram or object name. If an external
name is not specified. the internal name is used for the
symbol name.

"* Parameter_Typex: A parenthesized. comma-separated list
of type and/or subtype names that describes the param-
eter-type profile of an exported subprogram. If the subpro-
gram has no parameters. the list can consist of the single
word Null. This optional argument may be required when
the Internal argument specifies an overloaded subprogram.
See "Usage." below.

"• Result_Type: The result-type profile of an exported
function. This optional argument may be required when the
Internal argument specifies an overloaded function. See
"Usage." below.

"* Language: The name of the language in which the calling
code is written. The only language name currently
supported is C: always use this value when exporting to C
or C++. Other language names are ignored, so this
argument can be omitted when exporting to a language
other than C or C++.

Usage

Use these export pragmas to create global symbolic names for
Ada subprograms that will be called-or Ada objects that will be
referenced-from non-Ada code. The linker will use these
symbols to resolve intermodule references.

If the internal subprogram name is overloaded, you must
supply enough information for the compiler to determine
unambiguously which subprogram to export. Specify the
ParameterTypes (and/or. for functions, the ResultType) so

7x9" Printed Template, rev. 1.9



Pragmas: Pragmas ExportFunction, Export-Object, and Export-Procedure

that the compiler can construct the parameter- and/or result-
type profile of the subprogram.

SCastton: Exporting a subprogram does not export the mecha-
ntsm used by the compiler to perform elaboration checks. A call

from another language to an exported subprogram with an
unelaborated body may produce unpredictable results when the
subprogram references an object that is itself unelaborated.

A• Caution: Accesses to Ada objects by non-Ada code are inher-
ently unsafe: the compiler and runtime system cannot guarantee
the integrity of such exported objects. It is the developer's respon-
sibility to ensure that the code that accesses an exported object
properly interprets and maintains the underlying structure of the
object.

Notes
"* An export The pragma can appear only at the place of a

declarative item in a declarative part or package specifica-
tion; the subprogram or object to which it applies must
have been declared by an earlier declarative item of the
same declarative part or package specification.

"* An exported subprogram must:

" Not be a generic
"o Be declared in a static scope: that is. it must not be

inside any subprogram. task. generic unit, or block
statement

"* An exported object must:

u Not be in a generic unit
o Be a variable

o Be declared in a static scope: that is. it must not be
inside any subprogram. task. generic unit. or block
statement

o3 Have a static size: that is. its subtype must be one of:
- A scalar type or subtype

- An array subtype with static index constraints whose
component size is static

- An undiscriminated record type or subtype

7x9" Printed Template, rev. 1.9 87



Chapter 10 LRM Appendix F: ImplementaUon-Dependent Characteristics

References for Subprograms
m elaboration of a library unit. LRM 10.5

w order of elaboration. LRM 3.9

"* overloading. LRM 8.3

"* parameter and result type profile. LRM 6.6

" 'Calling an Ada Subprogram from C" on page 8

References for Objects
"* limited private type. LRM 7.4.4
"* private type. LRM 7.4

" 'Sharing Global Objects" on page 14

Pragma Generic Policy

Tells the compiler how to generate code for a generic package or
subprogram and its instantiations. The syntax is:

pragua GUERIC._POLICT
([GENERIC_-UT->I szmple...ame,

[CoDE ->]) REPLICATIED I sAMM)l

Arguments
* GenericUnit: The simple name of the generic package or

subprogram to which the pragma applies.
* Code: A keyword that specifies whether all instantiations

should share the code in one common routine (Shared). or
whether each instantiation should be coded separately
(Replicated).

Usage
See "Setting Shared or Replicated Generic Policy" on page 22.

Notes
"* Use pragma InstancePolicy to override the shared Generic-

_Policy for one or more Instantiations of a generic package
or subprogram. See "Pragma InstancePolicy" on page 93.

"* The compiler treats all generics as Replicated unless other-
wise specified with pragna Generic-Policy.

88 7x9 Printed Template, rev. 1.9



Pragmas: Pragmas ImportFunction, ImportObject, and Import-Procedure

"* The pragna can appear only at the place of a declarative
Item in a declarative part or package specification: the
generic to which it applies must have been declared by an
earlier declarative item of the same declarative part or
package specification.

"* Any generics appearing In Apex interface views must be
shared, since the compiler cannot access the generic body
to use as a template for coding replicated Instantiations.

References
* generic Instantiation. LRM 12.3

* generic package. LRM 12.1

* generic subprogram. LRM 12.1

* simple name. LRM 4.1

Pragmas Import-Function, Import Object, and ImportProcedure
Associates an Ada name with the global symbol for a non-Ada
subprogram (function or procedure) or object so that an Ada
subprogram can call the subprogram or reference the object.
The syntax is:

pragea IMPORT_?UNCTION
(I INTERNAL ->] inteznal-name

(, (EXTERNAL W>1] "ezternal name"]

(, [PARAETE•R.TYPES ,>1 parameter type list]
1, [RESULTTYPE -M> typeomark]
I, [MNCHANISM - m] mechanism list]);

pragua IMPORTOBJECT
([INTERNAL ,>] internalnane

(, [EXTEREALm>] "external nam] );

pragma IMPORTPROCEDURE
([INTERNAL M>] internal-name
(, [EXTERNAL >] "external-name"]
[, [PARAMETER_TYPES -=> parameter typeo-list]
[, (MECHANISM ,>1 mechanism list]);

Arguments
a internal: The Ada simple name of the non-Ada subpro-

gram or object to be imported.

7x9- Pnrnted Template, rev. 1.9 89



Chapter 10 LRM Appendix F: Implementation-Dependent Characteristics

m Zxternal: An optional string literal that specifies the global
symbol name to be created by the Ada compiler. Since other
languages may enforce non-Ada-compatible naming con-
ventlons. the external symbol may differ from the internal
subprogram or object name. If an external name is not
specified. the internal name is used for the symbol name.

s Parameter_Types: A parenthesized, comma-separated list
of type and/or subtype names that describes the param-
eter-type profile of an imported subprogram. If the subpro-
gram has no parameters, the list can consist of the single
word Null. This optional argument may be required when
the Internal argument specifies an overloaded subprogram.
See "Usage," below.

m ResultType: The result-type profile of an imported
function. This optional argument may be required when the
Internal argument specifies an overloaded function. See
"Notes." below.

m Mechanism A parenthesized, comma-separated list of
parameter-passing mechanisms for the parameters passed
by a subprogram. If the imported subprogram has parame-
ters, then the Mechanism argument is required: otherwise,
do not include Mechanism. There must be a one-to-one
correspondence between the passed parameters and the
mechanisms. The supported mechansms are:

u Value: The corresponding parameter k; passed by value.

Note: When interfacing with C or C++, only scalars can be
passed by value: Mechanism must always be Value and
the corresponding Ada parameter must be an in parameter

for scalars.

o Reference: The corresponding parameter is passed by
reference: that is. its address is passed. This applies to
records and arrays in C and C++ and to C++ constant
reference parameters.

If all of the imported subprogram's parameters are passed
with the same mechanism, you can specify a single occur-
rence of the mechanism without parentheses.

90 7x9 Printed Template, rev. 1.9



Pragmas: Pragmas Import-Function, Import-Object, and ImportProcedure

Usage
Use the import pragmas to supply more Uformation about a
non-Ada subprogram specified with pragma Interface or a non-
Ada object to be referenced by Ada code.

Every imported subprogram must be described both by pragma
Interface and by an import pragma. in that order. Pragma Inter-
face is ignored if there is no corresponding Import pragma. or if
the import pragma contains errors.

If the internal Ada subprogram name is overloaded, you must
supply enough information for the compiler to determine
unambiguously which subprogram is being imported. Specify
the ParameterTypes (and/or, for functions, the Resuit Type)
so that the compiler can construct the parameter- and!or
result-type profile of +he subprogram.

Caution., Accesses to non-Ada objectsfrom Ada code are inher-
ently unsafe; the compiler and runtime system cannot guarantee
the Integrity of such Imported objects. It Is the developer's re-
sponsibillty to ensure that the code that acces.•ts an imported ob-
ject properly interprets and maintains the under'ying structure of
the object.

Notes
"* An import The pragma can appea- only at the place of a

declarative item in a declarative part or package specifica-
tion: the subprogram or object to which it applies must
have been declared by an earlier declarative item of the
same declarative part or package specification.

"* An import pragma must not refer to a gene.,c subprogram.
"* An imported object must:

3 Not be in a generic unit
" Be a variable declared at the outermost level of a library-

package specification or body

" Have a static size. that is, Its subtype must be one of:
- A scalar type or subtype
- An array subtype with static index constraints whose

component size is static
- An undiscriminated record type or subtype

7x9W Printed Template, rev. 1.9 91

aa I II IIII II I I T II I



Chapter 10 LRM Appendix F: Implementation-Dependent Characteristics

m To assign an imported object a default Initial value, use
pragma Initialize. See "Pragna Initialize" on page 92.

References for Subprograms
"* Interface to other languages. LRM 13.9

"* pragmalnterface. LRM 13.9

"* scalar types, LRN. 3.3

" 'Calling a Non-Ada Subprogram from Ada" on page 6

References for Objects
"* limited private type. LRM 7.4.4

"* private type. LRM 7.4

" 'Sharing Global Objects' on page 14

Pragma Initia'ize

Specifies that default initialization be carried out for an
imported va.-iable or a variable referenced by an address clause.
The syntax is:

praga ZINITIALZEZ
(simple name);

Arguments
m simpl.e name: The variable to which default initialization is

to be applied.

Usage

When a program imports a variable object or declares a variable
with an address clause. th. compiler assumes that this variable
previously existed. The compiler makes no attempt to assign a
default (initial) value to this variable, because the variable
might already contain a valid value or might be given an initial
value by some other program. By default, the compiler does not
perform any initialization on:

"* Variaties designated by addre•,s clauses

"* Imported variable objects: see "Pragmas Import-Function.
Import-Object. and Import Procedure" on page 89

92 7x9' Printed Template, rev. 1.9



Pragmas: Pragma InstancePolicy

Pragna Initialize tells the compiler to assign an arpropriate
default value to the variable-for example, setting pointers and
pointer fields to null. record fields to the initial values present
in the record type definition, and discriminants to their proper
values. Hence. the variable must not have an explicit initial
value.

No additional storage space is allocated because valid variables
already exist.

The referenced variable must:

"* Have been declared earlier in the same declarative part

"* Be an array or record

"* Have an associated address clause, or it must have been
imported using pragma ImportObject before the occur-
rence of pragma Initialize

"* Not have an explicit initial value

Example

Pragma Initialize can be used to request that pointers be set to

Null or that record fields be given some starting value.

References
w address clause. LRM 13.5

n default initialization. LRM 3.2.1

Pragma InstancePolicy

Specifies how to generate code for specific instantiations of a
generic. The syntax Is:

pragna INSTANCEPOLICT

((INSTANTIATION ->] smUple.name,
(CODE ,M> REPLICATED I SEARED);

Arguments
"* Instantiation: The simple name of the specific instantia-

tion to which the pragma applies.

"* Code: A keyword whose value can be Replicated or Shared.

7x9' Printed Template, rev. 1.9 93



Chapter 10 LRM Appendix F: Implementatlon-Dependent Characteristics

Usage
Use pragma InstancePolicy to specify whether to generate
replicated or shared code for specific instantiations of generics.

The following example Illustrates the use of the pragma:

-- EXCUNMe Z and ZXCNANG3R use the cocan shared

-- code. EXCHANGOS uses its own replicated code.

generic
type Sometype is private;

procedure swap(X, Ys in out Sometype);
pragma Generic Policy(Swap, Shared);

procedure ExchangeR is now swap(Smeotypo -> Real);
procedure Rzchange_l is new svap(Scmetype -> Integer);
subtype S is String(L..100);

procedure Exchanges is now evap(Sometype -> 6);

pragua ZnstancePolicy(Ezchanges, Replicated);

Notes
"* The pragma is ignored if the instantiation refers to a generic

in an Apex interface view.
"* The pragma and the named instantiation must occur within

the same declarative part or package specification.
"* The instantiation must occur before the pragma.

"* If the Instantiation argument refers to several preceding
overloaded subprogram instantiations. the pragma applies
to all of them.

"* Only one pragma InstancePolicy can be applied to each
instantiation.

References
" "Pragma Generic_Policy" on page 88

"* "Setting Shared or Replicated Generic Policy" on page 22
"* generic instantiation. LRM 12.3
"* generic package. LRM 12.1
"* generic subprogram. LRM 12.1
"* simple name. LRM 4.1

94 7x9" Printed Template, rev, 1.9



Pragmas: Pragma Main

Pragma Main

Designates an Ada main unit and determines some aspects of
its runtime behavior. The syntax is:

pragma HuNm
( ((DETECT DE-flLOCK - boolean ezpression, ]

[HlaxP SIZ i> staticinteger zepressaon,j
([OUBLOCEING_10 ,, booloan expression,]
(POIXCOMIPLIAlT - booleaonezpres&ion,]
(pRDIrPTIVUSCHEDULXNG - boolean expression,)
(SI[GALSTACK_SIZzE static intoeger zpressioan, I
[STACKSIZZ , static _ntegerezpression,]
[TASK PRIORITYJDEFAULT => priority ezpression, ]

[TAs TK _CX_SIZZ_DFAULT
- static integer ezpression,]

[TINZ SLICE duration expression]) ];

Arguments
a DetectDeadlock: Specifies whether the Rational Ada

runtime system should diagnose deadlock situations in the
program. If True, the runtime system will print a diagnosis
of what is causing the tasks to block when deadlock occurs.
If False. the program simply hangs. The default is False.

"* HeapSilze: A nonnegative static integer expression that
specifies how much space to allocate for the heap, in bytes.
when the main unit begins execution. If this argument is
specified, no additional space is allocated to the heap after
initialization: requests for more heap space raise Storage-
-Error.

If not specified. heap space is allocated dynamically as
needed until space is exhausted and StorageError is
raised.

"* NonblockingIc: Specifies whether I/O should block all
tasks in the program. If True, only the task performing the
I/O blocks: If False. the entire program blocks. For a
description of limitations and operation. see "I/O in Tasking
Programs" on page 34 and "Using Blocking and
Nonblocking I/0' on page 58. The default is False.

7x9" Printed Template, rev. 1.9 95



Chapter 10 LRM Appendix F: Implementatlon-Dependent Characteristcs

" Posiz_Compliant: Specifies whether certain behavior
described by the IEEE Portable Operating System Interface
(POSIX) is required. If True, the following operational char-
acteristics of progrms compiled and linked under Rational
Apex are affected:
"c The program can control only those UNIX signals explic-

itly allowed by POSIX.5 3.3.3.1 (those not "reserved for
the Ada implementation").

"o The program cannot install an Interrupt-entry task to
handle UNIX signals that the runtime system uses, nor
can it install both an interrupt-entry task and an Ada
procedural signal handler for the same signal (POSIX.5
3.3.2.1(963)).

"o The default values for the Form-parameter fields in the
Ada-predefined I/O packages are the POSIX.5 values
rather than the Apex values, as described in "Field
Defaults" on page 50.

The default is True.
"* Preemptive Scheduling: Specifies whether preemptive

(asynchronous) task scheduling takes place. If True. all
tasks spawned by the main program are scheduled preemp-
tively. The default is False. Task scheduling is described in
Chapter 5. "Ada Tasking In UNIX."

"* SignalStack_Size: An integer expression greater than or
equal to 2.048 (2 Kb) that specifies the size of the signal
stack, In bytes. The Rational Ada runtime system uses this
stack for handling runtime signals. and the debugger uses
this stack for special type display. If not specified, the
default signal stack size is 64 Kb. When the program is run
under the debugger. the default stack size is increased to
2 Mb.

"* Stack_Size: A static integer expression greater than or
equal to 2.048 (2 Kb) that specifies the size of the main task
stack, in bytes. If not specified. the default stack size is
2 Mb.

" TaskPriority Default: An expression of type System-
.Priority that specifies the priority for any task without a
pragma Priority. The default is the same as the main task's
priority; if the main task is not given a priority, the default
is 127.

96 7x9" Printed Template, rev. 1.9



Pragmas: Pragma Main

"* TaskStackSitzoDefault: A static integer expression
greater than or equal to 2.048 (2 Kb) that specifies the size.
in bytes. of the stack for any task without a 'Storage_§Size
representation clause. The default is 64 Kb.

"* Time-_ lice: A nonnegative expression of type Standard-
.Duration that determines the quantity of time to allocate to
an executing task. By default, or if the value is zero, no time
slicing is used. This has an effect only in conjunction with
preemptive scheduling; otherwise, it is ignored.

Usage
Use pragma Main after the end of the unit body of any pa-
rameterless library-unit procedure to designate it as a main
program.

Pragmia Main can have two effects. It:

"* Causes the unit to be linked automatically if It Is in the
directory or view for which you have requested linking;
main units without pragma Main are not linked unless
explicitly requested.

"• Permanently specifies the size of various code sections and
the mode of operation for the executable program resulting
from a link.

Example

Use pragma Main as shown:

procedure Show_Main is
begin

DoSomething;
end Show_Main;
pragma Main (Stack-Size -> 10*1024); -- Change to 10 !b

Notes
a All arguments can be specified using Apex session switches

to change the options dynamically at runtime. The switches
have the same names as the arguments. in all uppercase.
with the prefix APEX. Explicit use of an argument on
pragna Main overrides the switch values.

7x9" Printed Template, rev. 1.9 97



Chapter 10 LRM Appendix F: Implementation-Dependent Characteristics

References
" library unit. LRM 10.1

"* main program. LRM 10.1
"* heap and stack allocation. "Miscellaneous Memory Manage-

ment" on page 64

Pragma MustBeConstrained
Indicates whether formal private and limited private types
within a generic formal part must be constrained or have
default values. The syntax is:

pragm MUST BE CONSTRAINED
(conditio__list);

Arguments
n conditionlist: A comma-separated list of conditions

that specifies a set of types and whether each set must be
constrained or have default values. Each element of the
condition list has the format:
[condition ->] typeid..lizt
where:

" condition: Can be either YES or NO. If omitted, the
default is YES. Determines the setting for all types in the
following type ID list.

" ttypAid list: A ceommna-separated list of formal private
or limited private types. These types must be defined in
the same formal part as the pragma.

Usage
Use pragma Must Be Constrained to specify how you intend to
use the formal parameters in a generic specification.

Each condition controls the types in the following type ID list.
until the next occurrence of a condition. Consider this example:

pragma Must_3eConstrained
(Typo_l, 1cO->Type_2, Ty"pe3, YS->TLype-4, Type_5);

At the beginning of the list. a condition is not specified. so YES
Is assumed. hence. Type_1 is constrained. NO controls the

98 7x9" Printed Template, rev. 1.9



Pragmas: Pngma Signal-Handler

following type ID list. which includes Type__2 and Type_3:
hence, they are unconstrained. YES controls the remaining type
ID list. so Type_4 and Type_5 are constrained.

Notes

If the condition NO Is specified, any use in the body that
requires a constrained type will generate a semantic error. If
YES is specified. any instantlations that contain actual param-
eters that require constrained types will generate semantic
errors if the actual parameters are not constrained and have no
default values.

References
"* constrained private type. LRM 7.4.2

"* generic formal type, LRM 12
"* matching rules for formal private types. LRM 12.3.2
"* limited private type. LRM 7.4.4

"* private type as generic formal type. LRM 12.1.2

Pragma Signal-Handler
Installs an Ada procedure as a UNIX signal handler. The syntax
is:

prag=a SIGNAL,_ANDLZR
(MlAN, Z n- siW-Jl._nauo,
SIGNAL -> integerezprossi on);

Arguments
" Name: The simple Ada name of the signa!-handling

procedure.
"* Signal: A nonstatic integer expression specifying the UNIX

signal number to be handled by the specified procedure.

Usage

Elaboration of the pragma has the effect of installing the spec-
ified procedure as a signal handler for the given signal: subse-
quent occurrences of the specified signal will cause the
specified procedure to be invoked.

7x9l Pnnted Template, rev. 1.9 99



Chapter 10 LRM Appendix F: Implementation.Dependent Characteristics

The pragma and the procedure body must occur in the same
declarative part. with the pragma following the procedure body.
This prevents the installation of a procedure whose body has
not yet been elaborated.

See "Ada Procedural Signal Handlers" on page 43 for details on
the construction of the procedure.

References
"* simple name. LRM 4.1
"* declarative part. LRM 3.9

Pragma SuppressAll
Suppresses all permitted runtime checks. The syntax is:

pragjma SUPPRuSS_-ALL

Arguments
None.

Usage

Use pragma SuppressAll to create the same effect as all of the
following:

pragma Suppress (AccossCheck);
pragm Suppress (DiscrijLnantCheck);
pragma Suppress (Division Check);
pragma Suppress (Elaboration Check);
pragma Suppress (Index Check);
praguE Suppress (Length Check);
pragua Suppress (Overflow Check);
pragua Suppress (Storage._Check);
praguE Suppress (RangeCheck);

Notes
* Pragna SuppressAll has no effect in a package

specification.

* The pragma must appear immediately within a declarative
part.

100 7x9* Printed Template, rev. 1.9



Attributes: Pragma SuppressElaborationChecks

References
a suppressing checks. LRM 11.

Pragma SuppressElaborationChecks
Suppresses all elaboration checks in a given compilation unit.
The syntax Is:

pragrm 8uppross_1l1aborationChocks;

Arguments
None.

Usage

Use pragma SuppressElaboration-Checks after the end of the
unit body of any compilation unit to suppress elaboration
checks for all subprograms in that unit. This is equivalent to
placing a named pragma Suppress (ElaborationCheck) on
each subprogram in the unit.

References
* suppressing checks. LRM 11 .7

Attributes

Table 10-3 summarizes all implementation-defined attributes
in Rational Ada. Each attribute is described in more detail in
the following subsections.

Table 10.3 Implfnentation-Dqfltnd AttrIbutes

Attribute Meaning

"Compiler Key Identifies the compiler used to generate code
for the specified object

"Compiler-Version Yields the version of the compiler used to gen-
erate code for the specified object

'DopeAddress Yields the address of the dope vector for an
array object

7XV Printed Template, rev. 1.9 101



Chapter 10 LRM Appendix F: Implementatlon.Dependent Characteristics

Table 10-4 Impemantatto-Deqfnned AftribWes (Continued)

Attrbute Meaning

"DopeSize Yields the size of the dope vector for an array
object

*EntryNumber Uniquely identifies an entry or generic

"Homogeneous Specifies whether objects in a coUection are of
uniform size

'TypeKey Uniquely identifies a type

'Compiler-Key
For a prefix N that denotes the name of an entity, N Compiler-

Key yields the full pathname of the compiler key. which Indi-
cates the compiler that was used to generate code for the unit
containing the definition of N.

The entity named by N can be a program unit (package, subpro-
gram. task, or generic), an object (variable, constant, named
number, or parameter), a type or subtype (but not an incom-
plete type). or an exception.

The value returned by this attribute is of type String; for
example. "/rnv home/keys/ada rational_rs6kaix".

This attribute can be used for runtime detection of incompati-
bilities In data representation. It typically is used when passing
messages over a network to ensure that the reader and writer
agree on how to interpret the message. See also 'Compiler-
Version.

'CompilerVersion
For a prefix N that denotes the name of an entity. N Compiler-
-Version yields the version of the compiler that was used to
generate code for the unit containing the definition of N.

The entity named by N can be a program unit (package, subpro-
gram. task, or generic), an object (variable. constant, named
number, or parameter), a type or subtype (but not an incom-
plete type). or an exception.

102 7x9" Prnted Template, rev. 1.9



Attributes: 'Dope-Address

The value returned by this attribute is of type string; for
example. "11.4.0*.

This attribute can be used for runtime detection of incompati-
bilities in data representation. It typically is used when passing
messages over a network to ensure that the reader and writer
agree on how to interpret the message. See also 'Compiler-Key.

'Dope-Address
For an array object A. A' Dope Address yields the address of
the dope vector that describes A. The value is of type System-
.Address. If the object denoted by A has no dope vector, this
value is 0.

This attribute can be 'ised in conjunction with 'DopeSize for
retrieving information about the object, as when reconstructing
the array when passing messages over a network. See "Dope
Vectors" on page 76 for additional information.

'Dope_Slze
For an array object A. A' Dope Size yields the size in bits of the
dope vector. The value is of type Universal-Integer.

A positive value is always returned, whether or not the object
denoted by A has a dope vector. Use 'DopeAddress to deter-
mine whether the dope vector actually exists.

This attribute can be used for retrieving information about the
object, as when reconstructing the array when passing
messages over a network. See "Dope Vectors" on page 76 for
additional information.

'EntryNumber

For a prefix E that denotes a task entry or generic formal
subprogram. Z Entry_ umber yields a UniversalInteger value
that uniquely identifies the entity denoted by E.

'Homogeneous
For a prefix T that denotes an access type. T' Homogeneous
yields a Boolean value. The value returned is True if all objects

7x9" Printed Template, rev. 1.9 103



Chapter 10 LRM Appendix F: Implementation-Dependent Characteristics

in the collection will always have the same constraints. The
converse, however. is not true.
Applying this attribute to a type that is not an access value is a

semantic error.

Note that the attribute is a property of the type, not of the
subtype. Thus. for any access type T. T'Romogeneous yields the
same value as T'Base'Homogeneous.

For example:

type TI is access String (1..10);-- TI'lomogeneous-True
type T2 is access String; -- T2'BoaogonoousmFalse
type T3 is now T2 (1 .. 10); -- T3'Hoaogeneous-False
type T4 is now T1; -- T4'Ncmogeneous-True

At the implementation level, the attribute indicates whether
constraint information is stored with allocated objects.

'TypeKey

For a prefix T denoting a type name. T' Typpe.Key yields a string
that uniquely identifies type T. This attribute typically is used
when passing messages of a given type over a network to ensure
that the reader and writer agree on the type to use when inter-
preting the message.

Attributes of Numeric Types

This section lists the values returned by attributes that apply
to integer types.

Integer Types
The attributes that apply to integer types-namely, 'First. 'Last.
and 'Size-yield the values shown below for the predefined base
type:

Table 10-4 Attribute Values for Integer Types

Attribute Value

'First -231

Last 231-1

7sIze 32

104 7x9" Printed Template, rev. 1.9



Packages Standard and System: Package System (LRM 13.7)

Packages Standard and System

This section contains the specifications for packages Standard
and System.

Package System (LRM 13.7)
Package Systm is

type Address is private;

type Name is (Sparc- unos);

Systam Name a constant Name :- SparcSunos;
Storage Unit s constant a-8;
MeorySize constant a- +(2 ** 31) - 1;

Kin_Int : constant - -(2 * 31);
Max znt s constant t- +(2 ** 31) - 1-

Max Digits s constant tm 15;
Max Mantissa a constant s- 31;
Fine Delta s constant s- 1.0 / (2.0 * 31);
Tick a constant :- 1.0 / 60.0;

subtype Priority is Integer range 0 .. 255;

AssertionError t exception;

function To Address (VaLue t Integer) return Address;
function ToInteger (Value : Address) return Integer;

function "+" (Left a Address; Right t Integer)
return Address;

function "+" (Left s Integer; Right a Address)
raturn Address;

function "-" (Left a Address; Right i Address)
return Integer;

function "-" (Left s Address; Right a Integer)

return Address;

function "<" (Left, Right a Address) return Boolean,
function "<-" (Left, Right s Address) return Boolean;
function ">" (Left, Right s Address) -eturn Boolean;

7x9" Printed Template. rev. 1.9 105



Chapter 10 LRM Appendix F: Implementation-Dependent Characteristics

function ">-" (Left, Right i Address) return Boolean;

--The functiovs above are unsigned in nature. Neither
-- Numeric Error nor ConstraintError will ever be
-- propagated by these functions.

-- Consequently,

To-Address (lu.tager'First) >
-- To-Address (Intager'Last);

-- and

-- ToAddress (0) < ToAddress (-1);

-- The unsigned range of Address includes values that
-- are larger than those implied by NemorySize.

AddressZero : constant Address;
NullAddress i constant Address;
No-Addr t constant Address;

private

type Address in new integer;

AddressZero a constant Address a- 0;
Null 'ddress s constant Address :- 0;
No-Addr a constant Address x- 0;

pragma Uuppress(Elaboration-Check, On ->System.."+");
pragma Suppress(Elaboration Check, On ->System."-");
pragna Suppress(Elaboration -Chock, On ->System.">");

pragma Euppresu(Elahoration_-Chock, on ->System. ">in");

pragma Supprons(Blaboration_,Check, On ->System. "<");

pragma Suppress(Blaboration_-Chock, On ->System."<-");
pragma Suppross(Elaboration_Check,

on -> System.Ta Address);
pragma Suppress(ElaborationCheck,

on -> System.TojInteger);

pragna Inline(System. "+");

pragma Inlin* (System. "-");
pragma Inline(Systam.">");
pragma Xnline(Systesm ")-");

pragma 1nlins(System. "<);

106 7x9* Pnnted Template, rev. 1.9



Packages Standard and System: Package Standard (LRM Annex C)

pragma g nue ne(Systm, '<")

pragma Inline(ystem.ToAddress);
pragma Inline(Uystem.!o_Znteger);

end system;

Package Standard (LRM Annex C)
package Standard is

type *UniversalZnteger* is ...
type *UniversalReal* is ...
type -UniversalFized* is ...
type Boolean is (False, True);

type Integer is range -2147483648 .. 2147483647;
type Pleat is digits 6

range -((2.0 " 128) - (2.0 "* 104))
((2.0 ** 128) - (2.0 ** 104));-- about 3.4R+38

type LongjFloat is digits 15
range -((2.0 ** 1024) - (2.0 ** 971))
((2.0 ** 1024) - (2.0 971)); -- about 1.83+308

subtype Natural is Integer range 0 .. 2147483647;
subtype Positive is Integer range 1 .. 2147483647;
type Duration is delta 0.000061035156

range -131072.00000000 ..
0131071. 9999389648437500000000;

type Character is ...

package Ascii is...

type String is array (Positive range <>) of Character;
Constraint grror t exception;
NumericError s exception;

Storagearror i exception;
Tasking_Error t exception;

ProgramError texception;

type *Anytype* is
record

null;
end record;

and Standard;

The following table shows the sizes of predefined integer and
floating-point types:

7x9' Printed Template, rev. 1.9 107



Chapter 10 LRM Appendix F: Implementation.Dependent Characteristics

Table 10-5 Sizes of Predqflned Numeric Types

Ada Type Name size

Integer 32 bits

Float 32 bits

LongFloat 64 bits

Flxed-point types are implemented using 32 bits.

Floating-point types are implemented according to the IEEE
Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std.
754-1985).

Standard.Duratlon is a 32-bit fixed-point type with a delta of
2-14.

Representation Clauses

This section discusses limitations on representation clauses in
the following categories:

"* Representation-Clause Error Handling" on page 108
"* Length Clauses" on page 109
* "Record Representation Clauses (LRM 13.4)" on page 110
"* Enumeration Representation Clauses (LRM 13.3)" on

page 110
0 "Change of Representation (LRM 13.6)" on page 110

For related information, see Chapter 9. "Sizes of Objects."

Representation-Clause Error Handling
Normally, an invalid representation clause causes an error at
compile time and prevents successful compilation.

Several Apex context switches, however, allow you to specify
whether to treat certain classes of invalid representation
clauses as nonfatal errors that allow successful compilation
rather than as errors. See Appendix A. 'Switches." and Using
Rational Apex for details on the following switches:

108 7x9" Printed Template, rev. 1.9



Representation Clauses: Length Clauses

IgnoreInvalldRepSpecs: Affects the handling of both

Invalid'and unsupported representation specifications.

* Ignore-UnsupportedRep.Specs: Affects the handling of
unsupported representation specifications only.

Length Clauses

Length clauses are never allowed on dert-ed record types:
otherwise, length clauses are supported by Rational Ada as
follows:

"* The value of a 'Size attribute must be a positive static
integer expression. It must be greater than or equal to the
minimum size necessary to store the largest possible value
of the type. 'Size attributes are supported for all scalar and
composite types with the following restrictions:

Table 10-6 'Size Attribute Restrictions

Types Legal Attribute Values

Access and task 32

Composite Must not imply compression of composite
components: such compression must have
been explicitly requested using a length clause
or pragma Pack on the component type

Discrete Less than or equal to 32

Fixed-point Less than or equal to 32

Floating-point Can specify only the size the type would have
if there were no clause: therefore. the only
legal values are 32 and 64

"* 'Storage-Size attributes are supported for access and task
types. The value given by a 'StorageSize attribute can be
any integer expression, and it is not required to be static.

"* 'Small attributes are supported for fixed.point types. The
value given by a 'Small attribute must be a positive static
real number that cannot be greater than the delta of the
base type. It need not be a power of 2.

7x9" Printed Template, rev. 1.9 109



Chapter 10 LRM Appendix F: Implementation-Dependent Characteristics

Enumeration Representation Clauses (LRM 13.3)
Enumeration representation clauses are supported with the
following restriction:

s The allowable values for an enumeration clause range from
Integer'First to Integer'Last.

Record Representation Clauses (LRM 13.4)
Both full and partial representation clauses are supported for
both discriminated and undiscriminated records. Record
component clauses are not allowed on:

"* Array or record fields whose constraint involves a discrimi-
nant of the enclosing record

"* Array or record fields whose constraint is not static

The static simple expression in the alignment clause part of a
record representation clause-see the Ada LRM 13.4 (4)-must
be a power of 2 with the following limits:

I <- stiat.csmimple -expression <- 16

The size specified for a discrete field in a component clause
must not exceed 32 bits.

Change of Representation (LRM 13.6)
Change of representation is supported wherever it is implied by
support for representation specifications. In particular, type
conversions between array types may cause packing or
unpacking to occur: conversions between related enumeration
types with different representations may result in table-lookup
operations.

Implementation-Generated Names

The Ada LRM allows for the generation of names denoting
implementation-dependent components in records. No such
names are visible to the user for Rational Ada.

110 7x9 Printed Template, rev. 1.9



Address Clauses (LRM 13.5): Unchecked Storage Deallocation (LRM 13.10.1)

Address Clauses (LRM 13.5)
Address clauses cannot be applied to task types. No other

restrictions are placed on address clauses.

An address clause can be attached to a task entry only when
the task entry is used for signal (interrupt) catching: however.
in this case, the task entry must be available at the time of the
signal. See the discussion of pragma SignalHandler on
page 99 and "Interrupt-Entry Tasks" on page 40 for additional
information.

Values of address clauses are not checked for validity. No check
is made to determine whether an address clause causes the
overlay of objects or of program units.

Unchecked Programming

Unchecked Storage Deallocation (LRM 13.10.1)
Unchecked storage deallocation is implemented by the Ada
LRM-deflned generic function UncheckedDeallocation. This
procedure can be instantiated with an object type and its
access type, resulting in a procedure that deallocates the
object's storage. Objects of any type can be deallocated.

The storage reserved for the entire collection associated with an
access type is reclaimed when the program exits the scope in
which the access type is declared. Placing an access-type decla-
ration within a block can be a useful implementation strategy
when conservation of memory is necessary within a collection.
Space on the free list is coalesced when ubjects are deallocated.

Erroneous use of dangling references w-a be detected in
certain cases. When detected, the Storat, _Error exception is
raised. Deallocation of objects that were not created through
allocation (that is, through UncheckedConversion) may also
be detected in certain cases, also raising StorageError.

Unchecked Type Conversion (LRM 13.10.2)
Unchecked type conversion is implemented by the generic
function UncheckedConversion defined by the Ada LRM. This

7x9" Printed Template, rev. 1.9 111



Chapter 10 LRM Appendix F: Implementation-Dependent Chracteriadtics

function can be instantiated with source and target types,
resulting In a function that converts source data values into
target data values.

Unchecked type conversion moves storage units from the
source object to the target object sequentially, starting with the
lowest address. Transfer continues until the source object Is
exhausted or the target object runs out of space. If the target is
larger than the source, the remaining bits are undefined.
Depending on the target-computer architect. the result of
conversions may be right- or left-Justified.

Restrictions on Unchecked Type Conversion

The following restrictions apply to unchecked type conversion:

"* The target type of an unchecked type conversion cannot be
an unconstrained array type or an unconstrained discrimi-
nated type without default discriminants.

"* Internal consistency among components of the target type
is not guaranteed. Discriminant components may contain
illegal values or be inconsistent with the use of those
discriminants elsewhere in the type representation.

Input/Output Packages

The Ada language defines specifications for four I/O packages:
Sequential lo. Direct_I.o Low Levello. and Textlo. The
following subsections explain the implementation-dependent
characteristics of those four packages provided with Rational
Ada.

Sequential-lo (LRM 14.2.2 and 14.2.3)

For the Read procedure of Sequentiallo. the DataError excep-
tion is raised only when the size of the data read from the file is
greater than the size of the out parameter Item.

POSIX Compliance

The Form parameter on subprograms in Sequential_lo is
compliant with the POSIX.5 standard to the extent described in
Chapter 7. *Files and I/O."

112 7x9" Printed Template, rev. 1.9



Input/Output Packages: Direct..o (LRM 14.2.4)

Direct lo (LRM 14.2.4)

Package Directlo may not be instantiated with any type that is
either an unconstrained array type or a discriminated record
type without default discriminants. A semantic error is reported
when an attempt is made to install any unit that contains an
instantiation in which the actual type is such a forbidden type.

For the Read procedure of Directlo. no check is performed to
ensure that the data read from the file can be interpreted as a
value of the Element Type.

Specification of Package Directlo (LRM 14.2.5)
The declaration of the type Count in package Direct_Io is:

type Count is now Integer range 0 .. Intogor'Last /
Zlsmont_Typo Size;

where ElementType is the generic formal type parameter.

POSIX Compliance

The Form parameter on subprograms in Directlo is compliant
with the POSIX.5 standard to the extent described in Chapter
7. "Files and I/O."

Low.Level..o (LRM 14.6)

Package LowLevello is not provided with Rational Ada.

Text..o (LRM 14.3)

The Text_Io default input and output files are associated
with the UNIX standard input and standard output paths.
respectively.

Specification of Package Text lo (LRM 14.3.10)

The declaration of the type Count in Textlo is:

typo Count in now integer range 0 .. I 000_000_000;

The declaration of the subtype Field in Textlo is:

subtype Field is Integer range 0 .. Integor'Last;

7x9 Printed Template, rev. 1.9 113



Chapter 10 LRM Appendix F: lmplementatlon-Dependent Characteristics

File-Management Operations
The operations of Get and Put are as described in the Ada LRM.

Data written using Put and Put-Line is not interpreted in any
fashion. Data written using Put-Line is followed by the line
terminator AsciLLf.

Data read using Get and Get-Line is not interpreted except that
the line terminator. Ascii.Lf. and the page terminator. Ascli.Ff.
are removed from the input stream.

POSIX Compliance

The Form parameter on subprograms in Textlo Is compliant
with the POSIX.5 standard to the extent described in Chapter
7, "Fles and I/O."

Other Implementation-Dependent Features

Machine Code (LRM 13.8)

Machine-code insertions are not supported at this time.

114 7X9 Printed Template, rev. 1.9



APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN-also listed here. These values are expressed here
as Ada string aggregates, where "V" represents the maximum input-line length.

Macro Parameter Macro Value

$MAX-IN LEN 254 -- Value of V

$BIGIDI (l..V-l -> 'A', V-> '1')

$BIG ID2 (i..V-I -> 'A', V -> '2')

$BIG ID3 (1..V/2-> 'A'W) & '3' &
(l..V-l-V/2 -> 'A')

$BIG ID4 (1..V/2 -> 'A') & '4' &
(1 .V-l-V/2 -> 'A')

$BIGINTLIT (l..V-3 -> '0') & "298"

SBIG REAL-LIT (1..V-5 -> '0') & "690.0"

$BIG STRING1 '"' & (l..V/2 -> 'A') & '"'

$BIG STRING2 '"' & (1..V-1-V/2 -> 'A') & '1' & '"'

SBLANKS (i..V-20 => '

$MAX LEN INT BASED LITERAL
"2:" & (l..V-5-> '0') & "11:"

$MAXLEN REAL BASEDLITERAL
"16:" & (1..V-7 -> '0') & "F.E:"

A-1



MACRO PARAMETERS

$MAXSTRING_LITERAL '' & (1..V-2 -> 'A'W) & "

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACCSIZE 32

$ALIGNMENT 1

$COUNTLAST 1000000000

$DEFAULT MEMSIZE 2147483647

$DEFAULT STOR UNIT 8

$DEFAAULTSYS_NAM SPARCSUNOS

$DELTADOC 0.000_000_000_465_661_287_307_739_257_812 5

SENTRYADDRESS SYSTEM.TOADDRESS (30)

$ENTRYADDRESS1 SYSTEM.TO_ADDRESS (31)

$ENTRYADDRESS2 SYSTEM.TO ADDRESS (2)

$FIELDLAST 2147483647

$FILETERMINATOR ' '

$FIXEDNAME NOSUCHTYPE

$ FLOATNAME NOSUCHTYPE

$FORMSTRING I"

$FORMSTRING2 "CANNOT RESTRICT FILE CAPACITY"

$GREATER_THAN-DURATION
- 1.0

$GREATER THAN DURATION BASE LAST
-- 131_073.0

$GREATERTHAN FLOAT BASE LAST
1-.E308

$GREATER THAN FLOAT SAFE LARGE
- -3.7E38

A-2



MACRO PARAMETERS

$GREATER THAN SHORT FLOAT SAFE LARGE
1.07308 -

SHIGHPRIORITY 255

$ILLEGALEXTERNAL FILE NAME1
BAD/ CHARACTERS

$ILLEGALEXTERNALFILE NAME2
CON'TAINS/ WILDCAPDS

$INAPPROPRIATE LINELENGTH
-1

$INAPPROPRIATEPAGELENGTH
-1

$INCLUDEPRAGMAI PRAGMA INCLUDE ("A28006D1 .TST");

$INCLUDEPRAGMA2 PRAGMA INCLUDE ("B28006DI .TST");

$INTEGER FIRST -2147483648

$INTEGER LAST 2147483647

$INTEGERLAST PLUS_1 2147483648

$ INTERFACELANGUAGE C

$LESSTHAN DURATION -1.0

SLESSTHAN DURATION BASE FIRST
-0-1 073.0

SLINETERMINATOR ASCII.LF

$LOW PRIORITY 0

SMACHINE CODE STATEMENT
NULL;

$MACHINECODETYPE NOSUCHTYPE

SMANTISSA DOC 31

$MAXDIGITS 15

$MAX INT 2147483647

SMAX INTPLUS_1 2147483648

$MIN INT -2147483648

$NAME NOSUCHTYPE

A-3



MACRO PARAMETERS

SHAMELIST SPARCSUNOS

SHAMESPECIFICIATION1 X2120A

SHAMESPECIFICATION2 X2120B

SHAMESPECIFICATION3 X3119A

$NEGBASEDINT 16#FFFFFFFE#

$NEWMEM SIZE 2147483647

$NEWSTORUNIT 8

$NEWSYSNAME SPARCSUNOS

SPAGETERMINATOR ASCII.FF

$EECORD-DEFINITION NEW INTEGER;

SRECOP.DNAME NOSUCHMACHINECODE TYPE

$TASKSIZE 32

$TASKSTORAGE SIZE 8192

STICK (1.0/60.0)

$VARIABLEADDRESS FCNDECL .ADDRESSO

$VARIABLEADDRESS1. FCNDECL .ADDRESS1

$VARIABLEADDRESS2 FCNDECL .ADDRESS2

SYcxmPRAGMAL EXPORT-OBJECT

A.-4



APPENDIX B

COMPILATION AND LINKER OPTIONS

The compiler and linker options of this Ada implementation, as described in
this Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and not
to this report.

B-i


